Layering IT Services for a Planetary "Exploration Web"

JPL

Norm Lamarra Section 366

Oct 29, 2002

Overview

JOI

- Background & Problem Domain
 - Space Communications Interoperability Points
- Proposed Approach
 - Example Middleware Goals
 - Some Architectural Requirements
 - Solution Approach
- Example Remote Applications
 - FY02 Messaging Prototype
- Benefits of Message-based Middleware
 - Communications, autonomy, automation
- Future Steps
 - Roadmap

Oct. 2002

Lamarra 2

Example Middleware Goals

عال-۱

- Improve scientist-instrument connection
 - Large effort and cost of coordinating mission plans
 - Coordination among spacecraft
- Improve average downlinked data value
 - Which bits do we get?
 - Knowledge vs. Information vs. Data
- Enhance remote applications
 - Simplify application interfaces
 - Simplify access to distributed resources
 - Increase robustness (e.g., s/w modification)
- Improve operations (automation & autonomy)
 - Robust execution (e.g., replication, failure detection/recovery)
 - On-board reasoning (e.g., vehicle health, science goals, etc.)

Oct. 2002

N Lamarra

Some Architectural Requirements

Support DTN & disconnected operation

- DTN: delay-tolerant network (latency, bandwidth, etc.)
- Robust range of QoS?
- Event buffering
- Support critical information and distributed object model
 - e.g., vehicle health, "surprising information", etc.
 - Message Prioritization
 - Message Efficiency (low overhead)
- Support asynchronous programming model
 - Support distributed computation (mobile code?) (implicit & explicit)
- Support for global naming (resources, nodes, etc.)
 - Who, what, where
- Provide access to distributed information & services
 - Data repositories, navigation, weather, time, science analysis, etc.
- Lightweight modular reusable infrastructure
 - Allow micro-platforms (sensor webs, etc.) to play (simple client)
- Able to integrate with flight software (e.g., MDS)

Possible Solution Approach

- Conceptualize a set of standardized "shared services" - 3 broad categories: Communications, Storage, Processing

 - Distributed client-server model useful for all 3
 - · Make object model highly flexible
 - · Make clients as lightweight as possible
 - · Simplify server replication (when necessary)
 - Build upon "enhanced" internet-style communication
 - · Asynchronous messaging has many advantages
 - · Publish/subscribe has further advantages
 - · Message prioritization and efficiency are crucial
- Deploy "*layered infrastructure*" incrementally
 - Basic services: Messaging, time, events, security
 - Information services: Remote data management, alarms
 - Higher-level services: navigation, weather, etc.
 - Agent interaction infrastructure (far future)
 - · e.g., "autonomous" communication vice "scheduled"

Solution Approach (cont'd.)

Issues/Reg'ts for shared services

- Communications

- Tolerate delay, disconnection, b/w limitation
 Buffered, asynchronous, ...
- · Allow choice of transport protocol
 - Support standards (e.g., CCSDS)
- Provide QoS (guarantees, reserved b/w, etc.)
- Allow (dynamic) priorities (inc. time-to-live)
- · Tolerate variety of network topologies (near/far)

Storage

- Provide flexible storage type (e.g., image, meas't, stream)
- · Provide query capability
- Support management functions (e.g., location, access)
- · Allow transport (e.g., move, replicate)

- Processing

- Allow remote processing (like "solver service")
- Support fault tolerance (e.g., checkpointing, validation)

Oct, 2002

N Lamerra 7

Benefits of Message-based Middleware

- Better use of communication bandwidth
 - "Remote" network is "local" to participants (maybe much more capacity)
 - · Redundant, fault-tolerant, dynamic, etc.
 - Much sensor information cannot reach Earth (e.g., MGS d/l <1% data)
 - Could be processed "locally" and shared efficiently
 - · Can pick up "waiting" info at later time (e.g., when in view)
 - Sensor networks more easily integrated (esp. different sensors)
 - Flexible message routing and filtering
 - · Remove dependence on time, address, platform
- Improve automation
 - "Alerts" and "Events" can trigger procedures
 - . e.g., health/status of spacecraft and sensors; automated info
 - Simplify use of on-board & distributed processing
 - Software upload/installation (e.g., fixes to Galileo)
 - Assist failure discovery/recovery
 - Process restart or migration; application reconfiguration
- Assist future autonomy
 - Simpler infrastructure for collaboration (joint planning, etc.)
 - · Distributed intelligence
 - More sources of information accessible for decisions
 - · e.g., terrain, weather, other off-board sensors

Oct, 2002

N Lamarra 1

Future Steps

- Messaging is required for almost <u>all</u> distributed apps
 - MOM provides simple model for application messaging:
 - Other information services can be lavered above MOM
 - e.g., distributed data mgt.: access/relay/archive/query
 - · Other protocols can be layered below MOM
 - e.g., IP, CCSDS: PROX-1, CFDP
- Improve MOM functionality for space
 - Simplify extending Message Object Model
 - Message forwarding; adaptive operation
 - Verify robustness (disconnection, b/w, etc.)
 - Address CCSDS standards (e.g., SOIF)
 - Enable dynamic installation/removal "standard services"
- Integrate with other applications
 - Simplify on-board processing (e.g., science extraction)
 - Provide support for dynamic algorithms (e.g., module upload)
 - Address software architecture issues (e.g., MDS, CLARAty)
- · Migrate to RTOS on flight hardware
 - e.g., VxWorks on PPC

Oct, 2002

N Lamarra 12

Roadmap for Space Middleware

JP

- · On-board processing
 - Image/sensor analysis; pattern recognition
- Data services (to in-situ assets)
 - Weather/climate info (e.g., from sensor webs)
 - Position/capabilities/availability of "nearby" assets
- Autonomy/Collaboration
 - In-situ scheduling; distributed operations
 - Sequence generation; science team collaboration
 - · Continuous planning; negotiated plans
 - Multi-agent coordination
- Virtual Exploration
 - Telepresence; video; audio
 - Virtual Environments

Oct, 2002

N Lamarra 13